Home » Ethics

Category Archives: Ethics

Want yet more email?

Enter your email address to get notifications of new posts.

Request contact
If you need to get in touch
Enter your email and click the button

– Sex Robots

A Brief Summary by Eleanor Hancock


Sex robots have been making the headlines recently. We have been told they have the power to endanger humans or fulfil our every sexual fantasy and desire. Despite the obvious media hype and sensationalism, there are many reasons for us to be concerned about sex robots in society.

Considering the huge impact that sexbots may have in the realms of philosophy, psychology and human intimacy, it is hard to pinpoint the primary ethical dilemmas surrounding the production and adoption of sex robots in society, as well as considering who stands to be affected the most.

This article covers the main social and ethical deliberations that currently surround the use of sex robots and what we might expect in the next decade.

What companies are involved in the design and sale of sex robots?

One of the largest and most well-known retailers of sex dolls and sex robots is Realbotix in San Francisco. They designed and produced ‘Realdolls’ for years but in 2016 they released their sex robot Harmony, which also has a corresponding phone application that allows you to ‘customise’ your robotic companion. Spanish developer Sergi also released Samantha the sexbot, who is a life-sized gynoid which can talk and interact with users. When sex robots become more sophisticated and can gather intimate and personal user data from us, we may have more reason to be concerned about who is designing and manufacturing sex robots – and what they are doing with our sexual data.

What will sex robots look like?

The current state of sex dolls and robots has largely commodified the human body, with the female human body appearing to be more popular in the consumer sphere amongst most sex robot and doll retailers. With that in mind, male sex robots appear to be increasing in popularity and two female journalists have documented their experiences with male sex dolls. Furthermore, there are also instances of look-a-like sex dolls who replicate and mimic celebrities. To this effect, sex robot manufacturers have had to make online statements about their refusal to replicate people, without the explicit permission of that person or their estate. The industry is proving hard to regulate and the issue of copyright in sex robots may be a real ethical and social dilemma for policy makers in the future. However, there have also been examples of sex robots and dolls that do not resemble human form, such as the anime and alien-style dolls.

Will sex robots impact gender boundaries?

Sex robots will always be genderless artifice. However, allowing sex robots to enter the human sexual arena may allow humans to broaden their sexual fantasies. Sex robots may even be able to replicate both genders through customisation and add-on parts. As mentioned previously, the introduction of genderless artifice who do not resemble humans may positively impact human sexual relations by broadening sexual and intimate boundaries.

Who will use sex robots?

There has been variation between the research results studying whether people would use sex robots. The fluctuations in research results mean it is difficult to pinpoint who exactly would use a sex robot and why. Intensive research about the motivations to use sex robots has highlighted the complexities behind such choice that mirror our own human sexual relationships. However, most research studies have been consistent when reporting which gender is most likely to have sex with a robot, with most studies suggesting males would always be more likely than females to have sex with a robot and purchase a sex robot.

Can sex robots be used to help those with physical or mental challenges access sexual pleasure?

Sex robots may allow people to practice sexual acts or receive sexual acts that they are otherwise unable to obtain due to serious disabilities. The ethics behind such a practice have been divisive between radical feminists who deny sex is a human-right, and critics who think it could be medically beneficial and therapeutic.

Will sex robots replace human lovers?

There has not been enough empirical research on the effects of sexual relations with robots and to what extent they are able to reciprocate the same qualities in a human relationship. However, it is inferable that some humans will form genuine sexual or/and intimate relationships with sex robots, which may impede their desire to bother or desire human relationships anymore. The Youtube sensation ‘Davecat’ highlights how a man and his wife have been able to incorporate sex dolls into their married life comfortably. In a similar episode, Arran Lee Wright displayed his sexbot on British daytime television and was supportive of the use of sexbots between couples.

Will sex robots lead to social isolation and exclusion?

There are many academics who already warn us against the isolating impact technology has on our real-life relationships. Smartphones and social media have increased our awareness about online and virtual relationships and some academics believe sex robots signal a sad reflection of humanity. There is a risk that some people may become more isolated as they chose robotic lovers over humans but there is not enough empirical research to deliver a conclusion at this stage.

Will sex robot prostitutes replace human sex workers?

As much as there have been examples of robot and doll brothels and rent-a-doll escort agencies, it is difficult to tell whether sex robots will ever be able to replace human sex workers completely. Some believe there are benefits from adopting robots as sex workers and a 2012 paper suggested that by 2050, the Red Light District in Amsterdam would only facilitate sex robot prostitution. Escort agency owners and brothel owners have spoken about the reduction in management and time costs that using dolls or robots would deliver. However, sociological research from the sex industry suggests sex robots will have a tough time replacing all sex workers, and specifically escorts who need a high range of cognitive skills in order to complete their job and successfully manipulative a highly saturated and competitive industry.

How could sex robots be dangerous?

It seems at this stage, there is not enough research about sex robots to jump to any conclusions. Nonetheless, it seems that most roboticists and ethicists consider how humans interact and behave towards robots as a key factor in assessing the dangers of sex robots. It is more about how we will treat sex robots than the dangers they can evoke on humans.

Is it wrong to hurt a Sex Robot?

Sex robots will allow humans to explore sexual boundaries and avenues that they may not have previously been able to practice with humans. However, this could also mean that people choose to use sex robots as ways to enact violent acts, such as rape and assault. Although some would argue robots cannot feel so violence towards them is less morally corrupt than humans, the violent act may still have implications through the reinforcement of such behaviours in society. If we enact violence on a machine that looks human, we may still associate our human counterparts with such artifice. Will negative behaviour we practice on sex robots became more acceptable to reciprocate on humans? Will the fantasy of violence on robots make it commonplace in wider society? Roboticists and ethicists have been concerned about these issues when considering sex robots but there is simply not enough empirical research yet. Although, Kate Darling still believes there is enough reason to consider extending legal protection towards social robots (see footnote).



References

Jason Lee – Sex Robots and the Future of Desire
https://campaignagainstsexrobots.org/about/

Robots, men and sex tourism, Ian Yeoman and Michelle Mars, Futures, Volume 44, Issue 4, May 2012, Pages 365-371
https://www.sciencedirect.com/science/article/pii/S0016328711002850?via%3Dihub

Extending Legal Protection to Social Robots: The Effects of Anthropomorphism, Empathy, and Violent Behavior Towards Robotic Objects, Robot Law, Calo, Froomkin, Kerr eds., Edward Elgar 2016, We Robot Conference 2012, University of Miami
http://gunkelweb.com/coms647/texts/darling_robot_rights.pdf

Attitudes on ‘Sex Robots will liberate the next generation of women
https://www.kialo.com/will-sex-robots-liberate-the-next-generation-of-women-4214?path=4214.0~4214.1

Footnotes

Extending Legal Protection to Social Robots: The Effects of Anthropomorphism, Empathy, and Violent Behavior Towards Robotic Objects, Robot Law, Calo, Froomkin, Kerr eds., Edward Elgar 2016, We Robot Conference 2012, University of Miami

– Next Stop, Biological AI

This truly startling talk by Professor Michael Levin, from the Allen Discovery Center at Tufts University, has implications for everything – not just regenerative medicine.

It is no exaggeration to describe the work done in Levin’s lab as Frankensteinian. This is not a criticism, just an inevitable observation.

Levin describes biochemical interventions that can effect electrical transmission at the inter-cellular level in a range of organisms. These change the parameters for regeneration of body parts and reveal that a non-neural regenerative memory can exist throughout an organism. From the start of evolution of ‘primitive’ life forms, anatomical decision-making is taking place in every cell, and at every level of body structure.

Levin gives a highly informed factual account of findings in bioelectrical computation. Although he only touches on the implications, these techniques potentially lead to a technology that can design new life-forms and biologically-based computation devices.

It seems incredible that research results like these are possible now. It may be years or decades before it translates into medical interventions for humans, or is applied to creating biologically-based artificial intelligence, but the vision is clear.

To me, more frightening than the content of this talk, is the Facebook logo hanging over Levin’s head (no doubt just promotion, but still!).

YouTube Video, What Bodies Think About: Bioelectric Computation Outside the Nervous System – NeurIPS 2018, Artificial Intelligence Channel, December 2018, 52:06 minutes

– It’s All Too Creepy

As concern about privacy and use of personal data grows, solutions are starting to emerge.

This week I attended an excellent symposium on ‘The Digital Person’ at Wolfson College Cambridge, organised by HATLAB.

The HATLAB consortium have developed a platform where users can store their personal data securely. They can then license others to use selected parts of it (e.g. for website registration, identity verification or social media) on terms that they, the user, is in control of.

The Digital Person
The Digital Person
This turns the table on organisations like Facebook and Google who have given users little choice about the rights over their own data, or how it might be used or passed on to third parties. GDPR is changing this through regulation. HATLAB promises to change it through giving users full legal rights to their data – an approach that very much aligns with the trend towards decentralisation and the empowerment of individuals. The HATLAB consortium, led by Irene Ng, is doing a brilliant job in teasing out the various issues and finding ways of putting the user back in control of their own data.

Highlights

Every talk at this symposium was interesting and informative. Some highlights include:


  • Misinformation and Business Models: Professor Jon Crowcroft
  • Taking back control of Personal Data: Professor Max van Kleek
  • Ethics-Theatre in Machine Learning: Professor John Naughton
  • Stop being creepy: Getting Personalisation and Recommendation right: Irene Ng

There was also some excellent discussion amongst the delegates who were well informed about the issues.

See the Slides

Fortunately I don’t have to go into great detail about these talks because thanks to the good organisation of the event the speakers slide sets are all available at:

https://www.hat-lab.org/wolfsonhat-symposium-2019

I would highly recommend taking a look at them and supporting the HATLAB project in any way you can.

– Ethics of Eavesdropping

It has been recently reported (e.g. see: Bloomberg News ) that the likes of Amazon, Google and Apple employ people to listen to sample recordings made by the Amazon Echo, Google Home and Siri, respectively. They do this to improve the speech recognition capabilities of these devices.

Ethical Issues

What are the ethical issues here? The problem is not with these companies using people to assist in the training of machine-learning algorithms in order to improve the capabilities of the devices. However there are issues with the following:


  • While information like names and addresses may not accompany the speech clips being listened to, it seems quite possible that other identification would potentially enable tracing back to this information. This seems unnecessary for the purpose of training the speech recognition algorithms.

  • It has been reported that employees performing this function in some companies, have been required to sign agreements that they will not disclose what they are doing. To my mind this seems wrong. If the function is necessary and innocent then companies should be open about it.

  • These companies do not always make it clear to purchasers of devices that they may be recorded, and listened to, by people. This should be clear to users in all advertising and documentation.

  • The most contentious ethical issue is what to do if any employee of one of these companies hears a crime being committed or planned. Another situation arises if an employee overhears something that is clearly private, like bank details, or information that, although legal, could be used to blackmail. In the first situation, are these companies to be regarded as having the same status as a priest in a confessional or any other person that might hear sensitive information? A possible approach is that whatever law applies to human individuals, should also apply to the employees and the companies like Amazon, Google and Apple. So in the UK for example, some workers (such as social workers and teachers) who are likely to occasionally hear sensitive information relating to potential harm to minors, are required to report it. In the second case, companies could be legally liable for losses arising from the information being revealed or used against the user.

It seems likely that companies are reluctant to admit publicly that interactions with these devices may be listened to by people, is because it might affect sales. That’s does not seem a good enough reason.

– AI and Neuroscience Intertwined

Artificial intelligence has learnt a lot from neuroscience. It was the move away from symbolic to neural net (machine learning) approaches that led to the current surge of interest in AI. Neural net approaches have enabled AI systems to do humanlike things such as object recognition and categorisation that had eluded the symbolic approaches.

So it was with great interest that I attended Dr. Tim Kietzmann's talk at the Cognitive and Brain sciences Unit (CBU) in Cambridge UK, earlier this month (March 2019), on what artificial intelligence (AI) and neuroscience can learn from each other.

Tim is a researcher and graduate supervisor at the MRC CBU and investigates principles of neural information processing using tools from machine learning and deep learning, applied to neuroimaging data recorded at high temporal (EEG/MEG) and spatial (fMRI) resolution.

Both AI and neuroscience aim to understand information processing and decision making - neuroscience primarily through empirical studies and AI primarily through computational modelling. The talk had symmetry. The first half was 'how can neuroscience benefit from artificial intelligence', and the second half was 'how artificial intelligence benefits from neuroscience'.

Types of AI

It is important to distinguish between 'narrow', 'general' and 'super' AI. Narrow AI is what we have now. In this context, it is the ability of a machine learning algorithm to recognise or classify particular things. This is often something visual like a cat or a face, but it could be a sound (as when an algorithm is used to identify a piece of music or in speech recognition).

General AI is akin to what people have. When or if this will happen is speculative. Ray Kurzweil, Google’s Director of Engineering, predicts 2029 as the date when an AI will pass the Turing test (i.e. a human will not be able to tell the difference between a person and an AI when performing tasks). The singularity (the point when we will multiply our effective intelligence a billion fold by merging with the intelligence we have created), he predicts should happen by about 2045. Super AIs exceed human intelligence. Right now, they only appear in fiction and films.

It is impossible to predict how this will unfurl. After all, you could argue that the desktop calculator several decades ago exceeded human capability in the very narrow domain of performing mathematical calculations. It is possible to imagine many very narrow and deep skills like this becoming fully integrated within an overall control architecture capable of passing results between them. That might look quite different from human intelligence.

One Way or Another

Research in machine learning, a sub-discipline of AI, has given neuroscience researchers pattern recognition techniques that can be used to understand high-dimensional neural data. Moreover, the deep learning algorithms, that have been so successful in creating a new range of applications and interest in AI, offer an exciting new framework for researchers like Tim and colleagues, to advance knowledge of the computational principles at play in the brain.  AI allows  researchers to test different theories of brain computations and cognitive function by implementing and testing them. 'Today's computational neuroscience needs machine learning techniques from artificial intelligence'.

AI benefits from neuroscience by informing the development of a wide variety of AI applications from care robots to medical diagnosis and self-driving cars. Some principles that commonly apply in human learning (such as building on previous knowledge and unsupervised learning) are not yet integrated into AI systems.

For example, a child can quickly learn to recognise certain types of objects, even those such as a mythical 'Tufa' that they have never seen before. A machine learning algorithm, by contrast, would require tens of thousands of training instances in order to reliably perform that same task. Also, AI systems can easily be fooled in ways that a person never would.  Adding  a specially crafted 'noise' to an image of a dog,  can lead an AI to misclassify it as an ostrich. A person would still see a dog and not make this sort of mistake. Having said that, children will over-generalise from exposure to a small number of instances, and so also make mistakes.

It could be that the column structures found in the cortex have some parallels to the multi-layered networks used in machine learning and might inform how they are designed. It is also worth noting that the idea of reinforcement learning used to train artificial neural nets, originally came out of behavioural psychology - in particular Pavlov and Skinner. This illustrates the 'intertwined' nature of all these disciplines.

The Neuroscience of Ethics

Although this was not covered in the talk, when it comes to ethics, neuroscience may have much to offer AI, especially as we move from narrow AI into artificial general intelligence (AGI) and beyond. Evidence is growing as to how brain structures, such as the pre-frontal cortex are involved in inhibiting thought and action. Certain drugs affect neuronal transmission and can disrupt these inhibitory signals. Brain lesions and the effects of strokes can also interfere with moral judgements. The relationship of neurological mechanisms to notions of criminal responsibility may also reveal findings relevant to AI. It seems likely that one day the understanding of the relationship between neuroscience, moral reasoning and the high-level control of behaviours will have an impact on the design of, and architectures for, artificial autonomous intelligent systems (i.e. see Neuroethics: Challenges for the 21st Century.Neil Levy - 2007 - Cambridge University Press or A Neuro-Philosophy of Human Nature: Emotional Amoral Egoism and the Five Motivators of Humankind - April 2019).

Understanding the Brain

The reality of the comparison between human and artificial intelligence comes home when you consider the energy requirements of the human brain and computer processors performing similar tasks. While the brain uses about 15 watts of energy, just a single graphics processing unit requires up to 250 watts.

It has often been said that you cannot understand something until you can build it. That provides a benchmark against which we can measure our understanding of neuroscience. Building machines that perform as well as humans is a necessary step in that understanding, although that still does not imply that the mechanisms are the same.

Read more on this subject in an article from Stanford University. Find out more about Tim's work on his website at: http://www.timkietzmann.de or follow him on twitter (@TimKietzmann).

Tim Kietzmann

Tim Kietzmann