Home » Design » – Next Stop, Biological AI

Request contact
If you need to get in touch
Enter your email and click the button

– Next Stop, Biological AI

This truly startling talk by Professor Michael Levin, from the Allen Discovery Center at Tufts University, has implications for everything – not just regenerative medicine.

It is no exaggeration to describe the work done in Levin’s lab as Frankensteinian. This is not a criticism, just an inevitable observation.

Levin describes biochemical interventions that can effect electrical transmission at the inter-cellular level in a range of organisms. These change the parameters for regeneration of body parts and reveal that a non-neural regenerative memory can exist throughout an organism. From the start of evolution of ‘primitive’ life forms, anatomical decision-making is taking place in every cell, and at every level of body structure.

Levin gives a highly informed factual account of findings in bioelectrical computation. Although he only touches on the implications, these techniques potentially lead to a technology that can design new life-forms and biologically-based computation devices.

It seems incredible that research results like these are possible now. It may be years or decades before it translates into medical interventions for humans, or is applied to creating biologically-based artificial intelligence, but the vision is clear.

To me, more frightening than the content of this talk, is the Facebook logo hanging over Levin’s head (no doubt just promotion, but still!).

YouTube Video, What Bodies Think About: Bioelectric Computation Outside the Nervous System – NeurIPS 2018, Artificial Intelligence Channel, December 2018, 52:06 minutes


Leave a comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

How do we embed ethical self-regulation into Artificial Intelligent Systems (AISs)? One answer is to design architectures for AISs that are based on ‘the Human Operating System’ (HOS).

Theory of Knowledge

A computer program, or machine learning algorithm, may be excellent at what it does, even super-human, but it knows almost nothing about the world outside its narrow silo of capability. It will have little or no capacity to reflect upon what it knows or the boundaries of its applicability. This ‘meta-knowledge’ may be in the heads of their designers but even the most successful AI systems today can do little more than what they are designed to do.

Any sophisticated artificial intelligence, if it is to apply ethical principles appropriately, will need to be based on a far more elaborate theory of knowledge (epistemology).

The epistemological view taken in this blog is eclectic, constructivist and pragmatic. It attempts to identify how people acquire and use knowledge to act with the broadly based intelligence that current artificial intelligence systems lack.

As we interact with the world, we each individually experience patterns, receive feedback, make distinctions, learn to reflect, and make and test hypotheses. The distinctions we make become the default constructs through which we interpret the world and the labels we use to analyse, describe, reason about and communicate. Our beliefs are propositions expressed in terms of these learned distinctions and are validated via a variety of mechanisms, that themselves develop over time and can change in response to circumstances.

Reconciling Contradictions

We are confronted with a constant stream of contradictions between ‘evidence’ obtained from different sources – from our senses, from other people, our feelings, our reasoning and so on. These surprise us as they conflict with default interpretations. When the contradictions matter, (e.g. when they are glaringly obvious, interfere with our intent, or create dilemmas with respect to some decision), we are motivated to achieve consistency. This we call ‘making sense of the world’, ‘seeking meaning’ or ‘agreeing’ (in the case of establishing consistency with others). We use many different mechanisms for dealing with inconsistencies – including testing hypotheses, reasoning, intuition and emotion, ignoring and denying.

Belief Systems

In our own reflections and in interactions with others, we are constantly constructing mini-belief systems (i.e. stories that help orientate, predict and explain to ourselves and others). These mini-belief systems are shaped and modulated by our values (i.e. beliefs about what is good and bad) and are generally constructed as mechanisms for achieving our current intentions and future intentions. These in turn affect how we act on the world.

Human Operating System

Understanding how we form expectations; identify anomalies between expectations and current interpretations; generate, prioritise and generally manage intentions; create models to predict and evaluate the consequences of actions; manage attention and other limited cognitive resources; and integrate knowledge from intuition, reason, emotion, imagination and other people is the subject matter of the human operating system.  This goes well beyond the current paradigms  of machine learning and takes us on a path to the seamless integration of human and artificial intelligence.

%d bloggers like this: